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Resolving ambiguities in auto-calibration

By Andrew Zisserman, David Liebowitz and Martin Armstrong

Department of Engineering Science, University of Oxford,
Parks Road, Oxford OX1 3PJ, UK

Three-dimensional (3D) projective structure, that is structure modulo a projectivity
of 3D space, can be recovered from its projection in multiple perspective images. The
images might be acquired, for example, by a moving monocular camera or a stereo
rig. This projective structure can be upgraded to Euclidean structure by identifying
two entities, the plane at infinity and the absolute conic.

Auto-calibration methods use constraints induced by the rigid motion of the cam-
era to determine the Euclidean structure (or equivalently the camera calibration).
Often these motion constraints are supplemented by known values of the camera’s
internal parameters or scene constraints in order to resolve ambiguities or stabilize
the algorithms.

It is shown in this paper that in certain common situations this supplementary
information may not resolve the ambiguity. This is illustrated for the particular
ambiguity arising for motions with a single direction of the rotation axis. Four types
of constraint are analysed, and the conditions under which the ambiguity is not
resolved are given. The constraint cases are: perpendicular image axes (the zero-
skew constraint); specified image aspect ratio; specified image principal point; and
perpendicularity of scene features.

Keywords: camera calibration; stereo; projective geometry;
reconstruction ambiguity; self-calibration

1. Introduction

The auto- (or self-) calibration problem in computer vision is the following: given
only corresponding features between multiple images of a scene, determine the metric
structure of the scene and cameras. Generally the features are points, and auto-
calibration methods proceed by first obtaining an n-view projective reconstruction,
i.e. points X in 3-space and camera projection matrices P such that

x1 = P1X, x2 = P2X, . . . ,xn = PnX,

where xi is the measured image point, and Pi the camera, for the ith view. At
this stage X and P are only determined up to a common, but unknown, projective
transformation (homography) of 3-space. The three-dimensional (3D) structure and
cameras are then ‘upgraded’ to metric by either implicitly or explicitly identifying
the plane at infinity and the absolute conic. There are three types of constraint which
are available for this upgrade:

1. motion based, e.g. that the motion is a Euclidean transformation of 3-space;

2. structure based, e.g. that scene lines are parallel or orthogonal;
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1194 A. Zisserman, D. Liebowitz and M. Armstrong

3. internal based, e.g. that the camera’s internal parameters are constant or have
particular values.

Research in auto-calibration originated with the paper of Faugeras et al . (1992)
where the Kruppa constraints on the fixed internal parameters were obtained from
the fundamental matrix. Since then several investigative trends have emerged: the
first trend is for exact or closed form solutions for the polynomial constraints arising
from view pairs (Luong 1992; Hartley 1992; Pollefeys et al . 1996; Bougnoux 1998)
using the fundamental matrix, or view triplets using the trifocal tensor (Armstrong
et al . 1996); a second trend is for the numerical minimization of suitable measures
for an over-constrained system (Hartley 1994a; Pollefeys et al . 1998; Triggs 1997;
Zeller 1996); and a third for existence proofs (Heyden & Åström 1997; Pollefeys et
al . 1998). Auto-calibration algorithms have also been developed for special motions
of monocular cameras (Armstrong et al . 1994, 1996; Hartley 1994b) and stereo rigs
(Beardsley & Zisserman 1995; Devernay & Faugeras 1996; Horaud & Csurka 1998;
Zisserman et al . 1995).

Currently the most successful schemes (Pollefeys et al . 1998) combine several of
the elements above. They are formulated in terms of the dual of the absolute conic,
which is a particularly concise parametrization introduced by Triggs (1997). The
algorithms require a set of consistent camera matrices for the image sequence which
can be obtained as described in Laveau (1996) and Beardsley et al . (1996). Solutions
are obtained by a numerical minimization, with a priori information on the internal
parameters included as constraints. The minimization is initialized from a linear so-
lution to a subset of the constraints. This generation of algorithms converges reliably,
is accurate, and applies to general camera motions even when some of the internal
parameters are varying.

However, in certain common situations motion-induced constraints are not suffi-
cient to determine the camera calibration. This has been pointed out by a number of
authors (Zisserman et al . 1995; Triggs 1997), for example in the case of planar motion
(where the camera rotation axis has a fixed direction, and the translation is perpen-
dicular to this direction). These ‘critical motion sequences’ have been catalogued by
Sturm (1997), including both continuous and discrete motions. It is generally sup-
posed that these ambiguities are resolved once additional information is supplied,
such as the value of particular internal parameters. It is shown in this paper that
supplementary information may not resolve the ambiguity.

The particular ambiguity arising when the rotation axes are parallel for multiple
camera motions is described in § 3. Section 4 provides examples of auto-calibration
algorithms where this ambiguity is available in closed form. In § 5 we analyse four
types of constraint and give the conditions under which the ambiguity is not resolved.
The cases are: perpendicular image axes (the zero-skew constraint); specified image
aspect ratio; specified image principal point; and, perpendicularity of scene features.

2. Background and notation

This section is a summary of the classical projective geometry notions of the plane at
infinity and absolute conic, and their relationship to camera calibration. It draws on
material from Faugeras (1993, 1995), Hartley (1994b), Kanatani (1992), Mundy &
Zisserman (1992), and Semple & Kneebone (1979). The absolute conic and its image
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Resolving ambiguities in auto-calibration 1195

allow the constraints arising in auto-calibration to be visualized geometrically. This
section also introduces the notation for the paper.

(i) Points, lines, and directions

On the image plane points are represented by homogeneous 3-vectors x, and lines
by homogeneous 3-vectors l. If a point x is on a line l, then l · x = 0.

In 3-space points are represented by homogeneous 4-vectors X, and planes by
homogeneous 4-vectors π. Directions are points on the plane at infinity (see below)
and are represented by points with X4 = 0. Often only the first 3-vector component
d of a direction DT = (dT, 0) is used. In general ‘=’ indicates equality only up to
scale between homogeneous quantities.

(ii) Conics and dual conics

A point conic is represented by a 3× 3 matrix C . A point x on the conic satisfies
xTCx = 0. A dual (or line) conic is represented by a 3 × 3 matrix C∗. A line l
tangent to the conic C satisfies lTC∗l = 0. Provided C is full rank C∗ = C−1, and
(C∗)∗ = C . Under a point homography x′ = Hx, a conic and a dual conic transform
as

C ′ = H−TCH−1, C
′∗ = HC∗HT. (2.1)

(iii) The plane at infinity π∞ and absolute conic Ω∞

The plane at infinity π∞ is the plane X4 = 0 in an affine frame. Parallel lines
intersect on π∞, and π∞ is fixed (setwise) under Euclidean motions.

The absolute conic Ω∞ is a point conic on π∞ defined as X2
1 +X2

2 +X2
3 = 0, X4 =

0. It contains only imaginary points. If points on π∞ are written as XT
∞ = (xT

∞, 0),
then Ω∞ is the conic xT

∞Ix∞ = 0, i.e. the matrix of Ω∞ is the identity I . The conic
Ω∞ is fixed (setwise) under Euclidean motions.

(iv) Camera projection matrices

Points in 3-space are mapped perspectively to points on the image by a 3×4 rank
3 camera projection matrix P, as x = PX. The matrix P may be decomposed as
P = A[R | t], where R is a 3 × 3 rotation matrix, t is a translation 3-vector, and
A is the camera calibration matrix. The rotation R and translation t represent the
Euclidean transformation between the camera and world coordinate systems. The
3 × 3 matrix A is upper triangular, and represents the internal parameters of the
camera. It has the following form:

A =

αu k u0
0 αv v0
0 0 1

 .

The elements αu and αv depend on the focal length of the camera and image axes
scalings. The aspect ratio is r = αu/αv. The principal point is (u0, v0)T, and the
‘skew’ element k depends on the physical angle between the x and y axes of the
sensor array.
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(v) Vanishing points and lines

Under projection by the matrix P = A[R | t] points on π∞ are imaged as

x = A[R | t]
(
x∞
0

)
= ARx∞, (2.2)

which is a planar homography x = Hx∞ between π∞ and the image plane with
H = AR. This homography is the map between directions and their vanishing points,
i.e. parallel lines intersect at a point on π∞, and the image of this point is a van-
ishing point. Note that H is independent of the translation. Similarly parallel planes
intersect in a line on π∞, and the image of this line is the vanishing line of the planes.

(vi) The image of the absolute conic

The image of the absolute conic (IAC), ω, depends only on the A matrix of P. This
important result will now be derived. The mapping between π∞ and the image is the
planar homography (2.2) H = AR, and under a point homography x→ Hx a conic C
maps as C → H−TCH−1. It follows that Ω∞, which is the conic C = Ω∞ = I maps
to ω = (AR)−TI (AR)−1 = A−TRR−1A−1 = (AAT)−1. So the IAC ω = (AAT)−1,
and this defines the dual image of the absolute conic (DIAC) as ω∗ = ω−1 = AAT.
This result demonstrates that once ω (or equivalently ω∗) is determined, so is the
calibration matrix A.

(a) Orthogonality and polarity

We now give a geometric representation of orthogonality in a projective space
based on the absolute conic and its image. The main device will be the pole–polar
relationship between a point and line induced by a conic. In the following the camera
coordinate system will generally be used for the world coordinates, so that R = I
and t = 0. In this case the vanishing point of the direction d is simply v = Ad.

(vii) Pole–polar relationship

The point x and conic C define a line l = Cx. The line l is the polar of x w.r.t. C ,
and the point x is the pole of l w.r.t. C . This relationship is illustrated in figure 1.
If the point y is on the line l, then yTl = yTCx = 0. Any two points x,y satisfying
yTCx = 0 are conjugate w.r.t. the conic C . The pole–polar relation is symmetric: if
x is on the polar of y then y is on the polar of x.

(viii) Orthogonality in 3-space and in the image

In 3-space directions d1 and d2 are orthogonal if dT
1Ω∞d2 = 0. This result follows

directly from the scalar product of two orthogonal vectors: in a Euclidean frame
dT

1Ω∞d2 = dT
1 Id2 = dT

1 d2 = 0. Orthogonality is thereby encoded by conjugacy.
The great advantage of this is that conjugacy is a projective relation, so that in a
projective frame (obtained by a projective transformation of 3-space) directions can
be identified as orthogonal if they are conjugate w.r.t. Ω∞ in that frame (in general
the matrix of Ω∞ is not I in a projective frame). The geometric representation of
orthogonality is shown in figure 2a.
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l x

y

C

Figure 1. The pole–polar relationship. The line l = Cx is the polar of the point x w.r.t. the
conic C , and the point x = C−1l is the pole of l w.r.t. C . The polar of x intersects the conic
at the points of tangency of lines from x. If y is on l, then yTl = yTCx = 0. Points x and y
which satisfy yTCx = 0 are conjugate.

Ω
π

d1

d2

ω
image

v1

v2

(a) (b)

Figure 2. Orthogonality represented by the pole–polar relationship. (a) On π∞ orthogonal
directions d1, d2 are conjugate w.r.t. Ω∞. (b) On the image plane orthogonal rays v1, v2 are
conjugate w.r.t. ω.

Similarly, in the image (figure 2b) ω defines orthogonality: two ray directions are or-
thogonal if they are conjugate points w.r.t. ω, and a ray direction and plane (through
the camera centre) are orthogonal if the corresponding point and line are pole–polar
w.r.t. ω. These projective representations of orthogonality in the image follow directly
from the projective mapping between π∞ and the image: a pole–polar relationship
on π∞ is mapped to a pole–polar relationship on the image. In the image the scalar
product between two ray directions is d1 ·d2 = (A−1v1) · (A−1v2) = vT

1 A−>A−1v2 =
vT

1 ωv2. So, if vT
1 ωv2 = 0, then the directions d1,d2 are orthogonal.

(ix) Vanishing points and lines

The vanishing point of lines with direction d in 3-space is the intersection v of the
image plane with a ray through the camera centre with direction d, namely v = Ad.
Similarly, the vanishing line of planes perpendicular to the direction d in 3-space is
the intersection l of a plane through the camera centre perpendicular to d, that is
l = A−Td.
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Consider a vanishing point v, its polar, l = ωv = (AAT)−1Ad = A−Td, is the
vanishing line of planes perpendicular to the direction v. Similarly, the pole of a line
l, given by v = ω−1l = ω∗l, is the vanishing point of the normal direction to planes
with vanishing line l. To summarize (all relations on vanishing points v and lines l):

1. Perpendicular directions
vT

1 ωv2 = 0. (2.3)

2. Normal to plane l = ωv.

3. Perpendicular planes lT1 ω
∗l2 = 0.

3. The ambiguity from rotations with parallel axes

Here we describe the fundamental one-parameter family ambiguity that will be ex-
amined in the rest of the paper. This ambiguity arises when the camera rotations
are about axes with a common direction. Examples of algorithms for recovering the
family of solutions, and the fixed points and lines discussed below, are given in § 4.

(a) The ambiguity in determining Ω∞

The absolute conic may be identified as the conic on π∞ fixed under any Euclidean
motion. However, as will be demonstrated below, for a particular rotation axis direc-
tion a one-parameter family of conics is fixed. Suppose the camera undergoes a series
of Euclidean motions with rotation axes restricted to be parallel to a fixed direction.
Then attempts to identify Ω∞ as the conic on π∞ fixed under these motions will
not determine a unique conic, but only a one-parameter family of conics.

Algebraically, the Euclidean transformation (a general screw motion) can be rep-
resented without loss of generality as a 4× 4 homogeneous matrix

HE =
[

R t
0> 1

]
. (3.1)

Let dr be the (unit norm) direction of the rotation axis, so that Rdr = dr. Under
the transformation HE, points on π∞ (i.e. with X4 = 0) are mapped to points on
π∞ by the 3× 3 homography x∞ → Rx∞. Under this point transformation a conic
on π∞ maps as (2.1) C → R−TCR−1 = RCRT.

We now examine the fixed conics under this mapping. The absolute conic Ω∞ is
fixed since RIRT = I . However, the (degenerate) point conic drd

T
r is also fixed.† It

follows that the one-parameter family of conics (a pencil)
C∞(µ) = I + µdrd

T
r (3.2)

is fixed under the mapping since
R(Ω∞ + µdrd

T
r )RT = RIRT + µRdrd

T
r RT

= Ω∞ + µdrd
T
r .

The scalar µ parametrizes the pencil. The pencil of conics C∞(µ) is the one-parameter
family of solutions to any auto-calibration algorithm based on constraints induced
by these motions.

† dr is here interpreted as a line Lr = Ω∞dr, which is polar to dr. However, sinceΩ∞ = I , it follows
that Lr = dr.
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Resolving ambiguities in auto-calibration 1199

(b) Fixed points and lines on π∞

In the following it is convenient to express the family C∞(µ) (3.2) in terms of the
points and lines on π∞ which are fixed under the motion. The fixed elements of
the motion are obtained algebraically from the eigenvectors of HE. As described in
Zisserman et al . (1995), the fixed points on π∞ are the direction of the rotation axis
dr, and the circular points I and J of the planes perpendicular to the rotation axis.

The line of intersection Lr of π∞ with the family of planes orthogonal to the
rotation axis is also fixed (setwise). The line Lr intersects Ω∞ in the circular points
I and J . The point dr and line Lr correspond to a direction and family of planes,
respectively, which are orthogonal. Consequently, dr and Lr are pole–polar w.r.t.
Ω∞.

These relations between the fixed points and lines andΩ∞ determineΩ∞ up to the
one-parameter family (3.2). To avoid repetition this family and its parametrizations
will not be described here, but instead will be described in the following section for
the fixed points and lines in the image, and their relation to ω. The same relations
apply in both cases.

(c) The ambiguity in determining ω

If it is further supposed that under the motion the camera’s internal parameters
A are fixed, then the IAC is also fixed, as are the images of the other fixed entities
on π∞. The constraints on ω arising from the imaged fixed points are:

1. The imaged circular points, ci, cj are on ω, i.e. cT
i ωci = 0, cT

j ωcj = 0. These
are two constraints on ω.

2. There is a pole–polar relation on ω between the line through the imaged circular
points, lr = ci × cj , and the vanishing point of the rotation axis direction vr,
i.e. ωvr = lr. These are two constraints on ω.

These relations are illustrated in figure 3a. The lines li, lj , which are tangent to ω,
are defined as li = vr × ci and lj = vr × cj .

There are a total of four constraints on the five degrees of freedom of ω, and
consequently a pencil of conics C (µ) satisfies these constraints. The pencil is il-
lustrated in figure 3b. This family of solutions is simply the mapping of the pen-
cil (3.2) onto the image plane. The projective relations of intersection and pole–
polarity between Ω∞ and the fixed points and lines on π∞ are preserved under
the mapping. The mapping is by the matrix A, and under this point homography
C (µ) = A−>C∞(µ)A−1 = A−>(I + µdrd

T
r )A−1 = ω + µlrl

T
r .

This pencil can be represented by the linear combination of any two conics within
it (Semple & Kneebone 1979). In particular the conics can be degenerate. It follows
that the pencil may be written as

C (µ) = Λ2 + µΛ1 = (lilTj + ljlTi ) + µ(lrlTr ), (3.3)

where µ parametrizes the family. The conic Λ1 is rank 1, and Λ2 is rank 2.
Both the degenerate conics Λ1 and Λ2 are specified entirely in terms of fixed

points and lines which can be obtained from image measurements (via the methods
of § 4). This is preferable to the C (µ) = ω + µΛ1 parametrization above which
involves the (unknown) image of the absolute conic. The pencil can also be written
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lr lr

vr

ljli

ω

ci
cj

lj

cjci

vr

image image

li

C(µ)

(a) (b)

Figure 3. (a) The image fixed points and lines under a rotation, and their relation to ω. The
point vr is the vanishing point of the rotation axis direction, and ci and cj are the imaged
circular points for planes orthogonal to the rotation axis. The line lr is the vanishing line for
planes orthogonal to the rotation axis. The image of the absolute conic contains the imaged
circular points. The point vr and line lr have a pole–polar relationship w.r.t. ω; with ω tangent
to the lines li, lj at the imaged circular points. (b) These relations do not uniquely define the
conic ω. There is a pencil of conics C(µ) consistent with the constraints.

as C (µ) = ω + µΛ2, again involving the unknown ω. Note, µ parametrizes all point
conic pencils. However, the same value of µ will not generate the same conic from
each family.

(d) The ambiguity arising from the infinite homography

The infinite homography H∞, which was introduced by Luong & Viéville (1994),
is the point homography between image planes induced by the plane at infinity. If
the camera undergoes a rotation R and a translation t, then vanishing points map
between images as v → H∞v. The infinite homography depends only on the rotation
between views and the internal parameters, and is given by H∞ = ARA−1. The
infinite homography is of interest here because the fixed points and lines under the
mapping H∞ determine the images of fixed points and lines on π∞.

Suppose H∞ is known. Then the IAC (and DIAC) may be determined up to the
one-parameter family (3.3) above. Luong & Viéville (1996) originally showed that
the DIAC could be determined in this manner. Here a derivation is given for the IAC
and the relationship to the eigenvectors of H∞ established.

(i) Geometric solution

The infinite homography is represented by a 3× 3 matrix H∞. The eigenvectors of
this matrix are the fixed points, and the eigenvectors of HT

∞ are the fixed lines. The
matrix H∞ = ARA−1 has an eigenvector vr = Adr with unit eigenvalue. The three
eigenvectors of H∞ have the following geometric interpretation:

1. vr, corresponding to the unit eigenvalue, is the vanishing point of the rotation
axis.
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Resolving ambiguities in auto-calibration 1201

2. ci and cj , corresponding to the eigenvalues e±iθ, are the images of the circular
points of planes orthogonal to the rotation axis.

Similarly, the eigenvectors of HT
∞ are

1. lr, corresponding to the unit eigenvalue, is the vanishing line of planes orthog-
onal to the rotation axis.

2. li and lj , corresponding to the eigenvalues e±iθ, are lines through vr and each
of the circular points.

The eigenvalue angle θ is the (Euclidean) angle of rotation about the axis. These
fixed points and lines and their relation to the IAC are again those of figure 3, and
the pencil of solutions (3.3) for ω can be written directly from these eigenvectors.

(ii) Algebraic solution

Using the transformation properties of conics under a homography (2.1) for point
and dual conics, the constraint that ω (and ω∗) are fixed under the H∞ mapping
becomes

ω = HT
∞ωH∞ (3.4)

and ω∗ = H∞ω∗HT
∞.

Here we will give the solution for (3.4); the solution for ω∗ is analogous. The
scale factor in the homogeneous equation can be chosen as unity provided H∞ is
normalized as det H∞ = 1. Equation (3.4) can then be written in a homogeneous
linear form Mc = 0, where M is a 6× 6 matrix composed from the elements of H∞,
and c is the conic ω written as a 6-vector. It can be shown that M is at most rank
4, so that there is a one-parameter family of (homogeneous) solutions for c,

c(µ) = n1 + µn2,

where ni span the two-dimensional nullspace of M. The matrix family is then ob-
tained as C (µ) = N1 + µN2, where N1,N2 are the matrices corresponding to n1,n2,
respectively. This family is identical to the family C (µ) (3.3) given by any of the
three parametrizations in terms of Λ1 and Λ2. For example, if ω is a solution to
ω = HT

∞ωH∞, then so is C (µ) = ω + µlrl
T
r (i.e. HT

∞C (µ)H∞ = C (µ)).
The form of the one-parameter family for ω∗ follows in a similar manner. For

example, if ω∗ is a solution to ω∗ = H∞ω∗HT
∞, then so is C∗(λ) = ω∗ + λvrv

T
r .

Insight into ambiguities which can be resolved for particular rotations can be ob-
tained directly by considering the form of H∞ (Armstrong et al . 1994). For example,
for a rotation parallel to the image x axis, H∞ = ARXA−1. When k = 0, as is
usual, there are no terms involving αu in H∞, so there are no possible constraints
on αu in (3.4). Consequently, the pencil will not have the veridical value of αu, and
a constraint that supplies the veridical value will resolve the ambiguity. Similarly,
for a rotation parallel to the image y axis, αv is unconstrained, and for a rotation
perpendicular to the image plane αu and αv only occur as the ratio αu/αv, so their
individual values are unconstrained.
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1202 A. Zisserman, D. Liebowitz and M. Armstrong

(a) (b)

Figure 4. The motion between (a) and (b) is a rotation about the camera centre, with the rotation
axis approximately parallel to the image y-axis. The white line is the fixed line lr computed from
the eigenvectors of H∞.

4. Where do one-parameter families arise?

This section reviews four methods that have been developed to identify the plane at
infinity and the absolute conic from multiple images. For each of the methods:

1. The camera undergoes a single motion, or multiple motions with rotations
about parallel axes.

2. The internal parameters A are fixed during the motion.

3. The algorithms provide a method for accessing the vanishing point of the ro-
tation axis and the imaged circular points.

(a) Single rotation of a camera about its centre

If there is a pure rotation about the camera centre, then, as shown by Hartley
(1994b), H∞ can be computed directly from the homography between the images.
The eigenvectors of H∞ are vr, ci and cj , from which the three lines composing the
degenerate conics (3.3) are obtained directly. Figures 4 and 5 show examples of the
fixed point vr and fixed line lr = ci × cj , computed from the eigenvectors of H∞,
which is determined from the homography between the images.

(b) Planar motion of a monocular camera

Suppose a camera undergoes planar motion, then the fixed points and lines over
the sequence are those of figure 3. The trifocal tensor provides a mapping between
corresponding lines over three views, i.e. if l, l′ and l′′ are the images of the same
line in three views, then li = l

′
jl
′′
kT jk

i (Hartley 1995), where T jk
i is the trifocal tensor

for the three views. The fixed image lines are obtained as fixed line solutions l to
this mapping, i.e. li = ljlkT jk

i .
In Armstrong et al . (1996) an algorithm is described whereby the fixed lines are

obtained from a cubic in one variable derived from the trifocal tensor. The tensor is
computed automatically from point (image corner) correspondences over three views.
Armstrong (1996) shows that improved results are obtained by bundle-adjustment
over a sequence consisting of more than three views.
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(a) (b)

(c) (d)

Figure 5. The motion between (a) and (b) is a rotation about the camera centre, with the
rotation axis not aligned with with the image axes. (c) and (d) show the fixed point and line
computed from the eigenvectors of H∞.

(c) Single motion of a fixed stereo rig

Suppose a fixed stereo rig undergoes a general motion. Fixed here means that the
relative orientation of the cameras on the rig is unchanged during the motion. The
projective structure of the sceneX can be obtained before (XA) and after the motion
(XB). Since XA and XB are two projective reconstructions of the same scene, they
are related by a 4 × 4 projective transformation HP, as XB = HPXA. It is shown
in Zisserman et al . (1995) that since the actual motion of the rig is Euclidean, the
homography HP is conjugate to a Euclidean transformation, i.e. HP = H−1

EP HE HEP.
In Zisserman et al . (1995) an algorithm is described whereby the transformation

HP is computed automatically from 3D point reconstructions. The eigenvectors of HP
identify the fixed points and lines on π∞, and thereby their images. An alternative
parametrization of these results is given in Devernay & Faugeras (1996) and Horaud
& Csurka (1998).

(d) Reconstruction ambiguity

A particular family of solutions for ω is often tightly coupled to a particular family
of reconstructions. For the cases above (excluding the rotation about the camera
centre for which 3D structure cannot be recovered), there is a one-parameter family
of metric reconstructions.

Suppose, for ease of imagining, that the rotation axis is vertical. Since the circular
points are known for planes orthogonal to the rotation axis, metric structure is known
in horizontal planes. The only ambiguity remaining is an affine scaling in the vertical
direction. The choice of this scaling corresponds to the one parameter in the ω pencil.
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Table 1. Examples of commonly occurring rotations

(These rotations fail to resolve the ω ambiguity for various specified internal parameters (see
the text for the comprehensive conditions). The rotation axis has direction dr = (d1, d2, d3)T.
Rotations causing failure are indicated by X.)

parameter specified︷ ︸︸ ︷
axis of rotation zero skew principal point aspect ratio

perpendicular to image plane, dr = (0, 0, 1)T X X X
parallel to image plane, dr = (∗, ∗, 0)T X
parallel to the image x-axis, dr = (1, 0, 0)T X X
parallel to the image y-axis, dr = (0, 1, 0)T X X

5. Resolving the ambiguity

In this section we answer the following question.

Given the one-parameter family of solutions for ω arising from a single
rotation (3.3), when does an additional constraint not resolve the ambi-
guity?

The ambiguity is resolved once the value of µ in (3.3) is determined, since then the
IAC, ω, (and equivalently the DIAC, ω∗), is uniquely determined. We will consider
when this ambiguity is not resolved by placing constraints on the family by, for
example, supplying values or ratios for particular internal parameters. The same
constraint can be applied to both ω and ω∗, but often the resulting (polynomial)
equations are of lower complexity for one of them. The notation used here is that
the rotation axis has direction dr = (d1, d2, d3)T. Table 1 summarizes the resolution
ambiguities.

(a) Scene constraints

We consider here the constraint imposed by the vanishing points of two orthogonal
directions. Other orthogonality constraints, such as orthogonality between the van-
ishing line of a plane and the vanishing point of the normal direction to this plane,
are applied in a similar manner.

Suppose the vanishing points of two orthogonal directions are v1 and v2, then from
(2.3)

vT
1 ωv2 = 0. (5.1)

We seek the member of the pencil C (µ) = Λ2 + µΛ1 which satisfies (5.1). This is
a linear equation for µ, namely vT

1 C (µ)v2 = vT
1 Λ2v2 + µvT

1 Λ1v2 = 0, and µ is
determined uniquely provided vT

1 Λ1v2 and vT
1 Λ2v2 are non zero.

The alternative parametrization for C (µ) = ω+µΛ1 illustrates why the ambiguity
is not resolved. The IAC ω obeys the constraint, and if also vT

1 Λ1v2 = 0 (because
lr·v1 = 0 or lr·v2 = 0), then all members of the family C (µ) satisfy the constraint, and
consequently the value of µ cannot be determined. Since Λ2 is uniquely determined
from ω and Λ1, the necessary and sufficient condition for non-resolution is vT

1 Λ1v2 =
(lr · v1)(lr.v2) = 0.

Phil. Trans. R. Soc. Lond. A (1998)

 rsta.royalsocietypublishing.orgDownloaded from 

http://rsta.royalsocietypublishing.org/


Resolving ambiguities in auto-calibration 1205

To summarize the argument of this subsection:

Proposition 5.1. The ambiguity (3.3) cannot be resolved by an orthogonality
constraint (5.1) if lr · v1 = 0 or lr · v2 = 0.

This result can also be derived directly in terms of ray directions. Writing lr =
A−Tdr and the image projections of the directions v1 = Ad1 and v2 = Ad2, then
(lr · v1)(lr · v2) = 0 when

(lr · v1)(lr.v2) = [(A−Tdr)T(Ad1)][(A−Tdr)T(Ad2)] = (dT
r d1)(dT

r d2) = 0. (5.2)

That is, the constraint fails when the rotation axis direction is perpendicular to either
of the line directions used to provide the orthogonality constraint.

For example, suppose the camera rotation is about a vertical world axis, then
orthogonal vanishing points for directions in the horizontal world plane do not resolve
the ambiguity. Note that this result applies for an arbitrary attitude of the camera.

(b) The skew-zero constraint

This is the most commonly used additional constraint on the internal parameters.
Its use has been suggested by several authors including Tomasi & Kanade (1992)
and Luong & Viéville (1996).

In detail, we wish to impose the constraint that the image x and y axes are
orthogonal. Orthogonality in the image is equivalent to conjugacy with respect to ω,
so that two directions v1 and v2 are orthogonal if vT

1 ωv2 = 0. For the x and y axes
vT

1 = (1, 0, 0) and vT
2 = (0, 1, 0), respectively, so that

(1, 0, 0)ω

0
1
0

 = 0. (5.3)

It follows that ω12 = ω21 = 0.
As in the application of the orthogonal scene constraints above, the skew-zero

constraint results in a linear equation for µ. From proposition 5.1 the constraint
does not resolve the ambiguity if lr · v1 = 0 or lr · v2 = 0. For example, suppose
lr = (0, 1,−c)T (a horizontal line at y = c) which would result from a rotation about
an axis parallel to the image y axis. Then the pencil is

C (µ) = ω + µlrl
T
r =

∗ 0 ∗
0 ∗ ∗
∗ ∗ ∗

+ µ

0 0 0
0 ∗ ∗
0 ∗ ∗

 ,
where ∗ indicates a non-zero element. Clearly all members of the pencil satisfy ω12 =
ω21 = 0. Consequently, zero skew does not resolve the ambiguity.

From the direction formulation of (5.2) the ambiguity cannot be resolved if

dr · (1, 0, 0)T = 0 or dr · (0, 1, 0)T = 0,

i.e. if d1 = 0 or d2 = 0. For example, for the rotation parallel to the image y axis
of figure 4, d1 = 0 and the ambiguity is not resolved. However, for the example of
figure 5, where both d1 6= 0 and d2 6= 0, the ambiguity can be resolved.

The skew-zero constraint is one of the cases where there is a significant difference
between placing a constraint on ω or on ω∗. Imposing the constraint on ω results in
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a linear equation for µ, whilst imposing the constraint on ω∗ results in a quadratic
because the elements of ω are quadratic polynomials (cofactors) in the elements of
ω∗, and vice versa. Luong & Viéville (1996) imposed the constraint on the DIAC, and
consequently obtained two solutions, one of which was fallacious and unnecessary.

(c) Specified principal point

The principal point is the centre of ω. To see this, note that the centre, c, of a
conic C is the pole w.r.t. the line at infinity, l∞ = (0, 0, 1)T, i.e. c = C−1l∞. So in
the case of ω,

c = ω−1l∞ = ω∗l∞ = (u0, v0, 1)T.

Consequently a specified principal point pT = (u0, v0, 1) places a pole–polar rela-
tionship on ω∗, namely p = ω∗l∞ (or equivalently on ω, i.e. ωp = l∞).

We first consider the case where the two components (u0, v0) of the principal
point are used to resolve the ambiguity. Note, this places two constraints on the one
unknown parameter µ.

The pencil of solutions for ω∗ can be written

C∗(λ) = ω∗ + λvrv
T
r .

The centre of the dual of C∗(λ) is

c(λ) = C∗(λ)l∞ = ω∗l∞ + λvrv
T
r l∞ = p+ λvrv

T
r l∞

since ω∗l∞ = p. Consequently c(λ) = p,∀λ if (i) vr · l∞ = 0 or (ii) vr = p. Under
these circumstances the entire pencil satisfies the constraint, and the ambiguity is
not resolved. The directions for the two cases are:

1. vr · l∞ = 0. In this case d3 = 0, which is a rotation with axis parallel to the
image plane;

2. vr = p. In this case dr = A−1p, so that d1 = d2 = 0, which is a rotation with
axis perpendicular to the image plane.

Since only one constraint in general is required to determine µ, we now consider if
there are additional ambiguities if only u0 or v0 are specified. Here vr is written as
vr = (v1, v2, v3)T.

Specifying only u0 we require that (i) vr · l∞ = 0 as before, but the second case
reduces to (ii) v1/v3 = u0. These conditions correspond to the direction constraints
d3 = 0 and αud1+kd2 = 0, respectively. Similarly, if only v0 is specified (i) vr ·l∞ = 0
as before, but the second case reduces to (ii) v2/v3 = v0, and these conditions
correspond to the directions d3 = 0 and d2 = 0, respectively.

To summarize for case (ii): specifying the principal point fails to resolve the am-
biguity when the vanishing point of the axis of rotation coincides with the principal
point (since all conics in the pencil will have the principal point as centre). Specifying
one component of the principal point fails if that component of the vanishing point
of the axis of rotation coincides with the corresponding component of the principal
point.
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(d) Specified aspect ratio

We first obtain an expression for the aspect ratio of the calibration matrix A(µ)
corresponding to a conic of the pencil C (µ). The matrix A(µ) is defined by C (µ) =
(A(µ)A(µ)T)−1 = A(µ)−TA(µ)−1. Writing the pencil C (µ) = ω + µlrl

T
r in terms of

A(0) = A (the true calibration matrix) and dr,

C (µ) = A−TA−1 + µ(A−Tdr)(A−Tdr)T

= A−T(I + µdrd
T
r )A−1 = A−TV (µ)−TV (µ)−1A−1,

where V (µ)−TV (µ)−1 is the Cholesky decomposition of I + µdrd
T
r , with V (µ) an

upper triangular matrix. Thus A(µ)−T = A−TV (µ)−T. The results of the previous
sections can also be derived from A(µ).

The aspect ratio r(µ) of A(µ) is obtained from the ratio of elements

A(µ)−T
22 /A(µ)−T

11 .

On examining

A(µ)−T = A−TV (µ)−T

=

1/αu 0 0
∗ 1/αv 0
∗ ∗ ∗


√

1 + µd2
1 0 0

∗
√

1 + µd2
2 − (µd1d2)2/(1 + µd2

1) 0
∗ ∗ ∗

 ,

it is clear that the ratio r(µ) depends solely on αu, αv, V11 and V22, and is given by

r(µ) =
A(µ)−T

22

A(µ)−T
11

=
1
αv

√
1 + µd2

2 −
(µd1d2)2

1 + µd2
1

/(
1
αu

√
1 + µd2

1

)
. (5.4)

We wish to impose the constraint that r(µ) = αu/αv in order to resolve the
ambiguity. Applying this equality to (5.4) gives

µ(d4
1µ+ d2

1 − d2
2) = 0. (5.5)

It follows that if d1 = d2 = 0 then the constraint is satisfied for all values of µ.
Conversely if d1 = d2 = 0, then applying the constraint does not determine µ, and
so does not resolve the ambiguity.

Note, in general two values of µ, and thus two conics in the pencil, satisfy the aspect
ratio constraint. For the parametrization C (µ) = ω + µlrl

T
r the conic corresponding

to µ = 0 is the true solution, ω, and the other is spurious.

6. Discussion

Often when there is a family of solutions (for ω say) further constraints are added
to resolve the ambiguity. These constraints may be consistent (i.e. already satisfied
by the family), or complementary, i.e. the additional constraints do reduce the ambi-
guity. Unfortunately as measurements contain errors, consistent constraints can be
mistaken for complementary ones, and the ambiguity is then resolved by the noise.
In the case of motions which are close to critical motion sequences this resolution
will be very poorly conditioned. Further details are given in Armstrong (1996).

Clearly it is important to identify poorly conditioned solutions under such cir-
cumstances and this requires, at the very least, that auto-calibration algorithms also
compute an uncertainty for the estimated metric calibration.
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This paper has examined whether constraints are complementary or consistent for
one type of critical motion sequence. The other types of motion ambiguity described
in Sturm (1997) can be examined in a similar manner.

We are grateful for comments from Marc Pollefeys and Lourdes de Agapito, and for financial
support from Esprit Project Improofs.
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Discussion

O. Faugeras (INRIA, France). My first question is about the ambiguity that was
in the work of Luong & Viéville because they looked at the wrong (the dual) conic.
What is the interpretation of the second solution?

A. Zisserman. I don’t have a geometric interpretation, but algebraically the sec-
ond solution arises because elements of the dual conic are cofactors, and therefore
quadratic in the elements of the original conic. A linear condition on the original
conic (the image of the absolute conic) becomes quadratic when applied to the dual
conic, and hence there are two solutions. I think the second solution is just fallacious.

O. Faugeras. My second question is, in the calibration of the stereo rig, the 3D
collineation is estimated to have magnitude one eigenvalues; are these constraints
enforced in the estimation, and if not would it help?

A. Zisserman. No, we didn’t enforce the constraints. The collineation was computed
from hundreds of point correspondences, so in terms of an estimation problem it was
very well constrained. The estimated matrix closely approximated the correct alge-
braic structure. However, I think it would be better to impose the constraints during
the minimization so that the estimated matrix had exactly the correct algebraic
structure.

R. I. Hartley (GE Corporate Research and Development, Niskayuna, NY, USA).
When the individual projective reconstructions are constructed, are all the points
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put in together from both views to construct the fundamental matrix? Because you
start with a stereo rig, with a fundamental matrix, you move the rig, but you’ve got
the same fundamental matrix. You could throw all the points in from both stereo
pairs.

A. Zisserman. I know, but we didn’t, because again, as we had hundreds of cor-
respondences automatically computed, the estimated fundamental matrix was ex-
tremely good. But Dr Hartley is quite right, we could have combined them all.

R. I. Hartley. To estimate the projective transformation what did Dr Zisserman
minimize?

A. Zisserman. We minimized reprojection error. Minimizing errors in three dimen-
sions produces inferior results.

T. Kanade (Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, USA).
Simple question. How does Dr Zisserman deal with radial distortion—before or after?

A. Zisserman. What we’ve tended to do is try to ignore it if we can; if the camera
lenses are of sufficient quality, without significant radial distortion, then we don’t do
anything about it. The multiple-view relations are very forgiving of radial distortion.
When the radial distortion is significant we compute a radial correction in advance
and map the points so that the camera model is effectively linear; only the features
are mapped, it is not necessary to warp the image.

T. Kanade. Does that mean that he has to do camera’s internal calibration?

A. Zisserman. I guessed that was coming. It is necessary to make assumptions in
order to compute radial correction. For example, that the centre of radial distortion
is near to the centre of the image, and some assumption about the aspect ratio, but
that’s all we need to bring in. Devernay & Faugeras (1995) describe a method which
solves for these parameters and the first-order radial correction based on straight
lines in the scene. But as I said, most of the time we do not have to make a radial
correction because with the camera lenses we’re using it’s not a problem. With a lens
like that of the SGI IndyCam, of course, a correction has to be made.

J. L. Mundy (GE Corporate Research and Development, Niskayuna, NY, USA). It
seems as though Dr Zisserman has done quite a large number of experiments and
has observed a lot of different situations and types of objects and so forth. Does he
have any feeling at this point whether points or lines are more robust in their ability
to produce structure? Would he have any preference between points and lines now,
based on his experience?

A. Zisserman. Lines are still the weaker of the two for several reasons. First, when
we compute multiple-view relations, such as the trifocal tensor, we generally compute
the initial estimate using points because fewer correspondences are required than for
lines (six-point correspondences compared to nine-line correspondences). The smaller
size for the minimal set is important when obtaining samples for the RANSAC robust
estimator. Second, line matching is not so successful without the constraints provided
by the multiple-view relations. So we tend to estimate the trifocal tensor, for example,
using point correspondences, and then use this tensor to guide line matching. Third,
with three-dimensional structure recovery, there are problems with lines when they
lie near to epipolar planes. Points do not suffer from this degeneracy. We estimate
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the final structure by bundle adjusting both points and lines over multiple views
(minimizing the reprojection error). Even so, occasional 3D lines are still in error
because of these degeneracies in line reconstruction. On the other hand, lines are
much more informative visually than points because they give a better impression
of the three-dimensional structure and its connectivity.

W. Triggs (INRIA, France). What about using more dense forms of structure than
points and lines?

A. Zisserman. Such as dense correspondences? Yes, we’re definitely going to move
onto that, but using the matched points and lines to guide the dense correspondence.
We’ve now got excellent multiple-view relations, so we don’t have to do dense corre-
spondence and search in a correlation window over the image. Instead we can search
along epipolar lines and verify using trifocal or other multiple-view relations.

W. Triggs. And how much will this buy in terms of accuracy?

A. Zisserman. It’s for visualization rather than accuracy. The points and the lines
give very accurate multiple-view relations. With dense correspondences the advan-
tage is in being able to reconstruct surfaces where there are no corner and line
features.

Additional references

Devernay, F. & Faugeras, O. 1995 Automatic calibration and removal of distortion from scenes
of structured environments. Society of Photo-Optical Instrumentation Engineers.
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